IV B.Tech - I Semester – Regular Examinations - DECEMBER 2022

PROJECT MANAGEMENT & OPTIMIZATION (Common for CE, EEE, CSE)

Duration:	3	hours
Duration.	\mathcal{I}	nourb

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.
- BL Blooms Level

ļ

$\mathbf{PART} - \mathbf{A}$

		BL	CO
1. a)	List project life cycle phases.	L1	CO1
1. b)	What are the three time estimates in PERT?	L2	CO2
1. c)	What is schedule performance index?	L2	CO3
1. d)	What is degeneracy in simplex method?	L2	CO4
1. e)	What is the condition for basic feasible solution	L2	CO5
	in transportation problem?		

PART - B

			BL	СО	Max. Marks
	I	UNIT-I			
2	a)	Explain characteristics of a project.	L2	CO1	6 M
	b)	Write rules for drawing network diagram.	L2	CO1	6 M
		OR			
3	a)	What is Work Break Structure(WBS)? Explain.	L2	CO1	6 M
	b)	Explain the construction of GANTT chart.	L2	CO1	6 M

				U	NIT	-II					
4		The follow	wing table	L4	CO2	12 M					
		other relev	vant data								
		Activity									
			time	time	c	ost	co	ost			
			(Days)	(Days	s) (1	Rs.)	(R	ls.)			
		1-2	4	3	6	600	80	00			
		1-3	2	2	4	·00	40	00			
		1-4	5	4	7	50	90	00			
		2-3	7	5	4	-00	60	00			
		2-5	7	6	8	00	10	000			
		3-5	2	1	5	00	65	50			
		4-5	5	4	6	600	85	50			
		Indirect c	ost per d	ay for th	he pro	oject	is Rs.	.200			
		I. Drav	w the net	work of	the p	projec	et.				
		II. Find	l the norm	nal dur	ation	and	cost	of the			
		proj	ect.								
		III. Find	l the opt	imum o	durati	ion a	nd c	ost of			
		the p	project.								
					OR						
5		Draw a ne	etwork di	agram a	and ca	alcula	te ES	ST,	L4	CO2	12 M
		LST, EFT	, LFT an	d total f	loat,	free	float,				
		Independe	ent float	and finc	d the	critic	al pat	h for			
		the follow	ving:								
						_					
		Acti	vity 1-2	2 2-3	3-5	2-4	4-5	5-6			
		Dura	tion 4	6	5	4	3	3			
				U	NIT-	III			1		
6	a)	What are			-	ns to	acce	elerate	L3	CO3	6 M
project completion? Explain.											~ AV A
	b)	Explain h	ow to cal	culate to			f proj	ect.	L3	CO3	6 M
					OR						

7	a)	Describe				-		rs to	o me	asure	L3	CO3	6 M
		project per											
	b)	Distinguis Schedule				Co	ost '	Vari	ance	and	L3	CO3	6 M
		~~~~~~			-								
						UN	IT-I	V					
8		An electr	ronio	c co	mpa	ny	man	ufac	tures	two	L4	CO4	12 M
		television	m	odels	s e	ach	on	a	sep	oarate			
		production						ity (	of I l	ine is			
		60 and the				•	-	•					
		unit of the	e mo	del I	use	s 10	piec	es o	of a c	ertain			
		electronic					-						
		model II		-									
		componen		-		-							
		the special					•			•			
		-		-			-			•			
		per unit for models I and II are Rs.30 and Rs.20 respectively. Formulate this problem as											
		linear programming model. Using graphical											
		method, determine the optimum daily											
		production	n of	the tw	vo n	node	ls.			•			
							OR						
9		Find the s	eque	ence	for 1	the f	ollov	ving	eight	t jobs	L4	CO4	12 M
		as shown	in	the	fol	lowi	ng ta	able	that	will			
		minimize	the	tot	al	elaps	sed	time	e for	the			
		completion	n of	all jo	bs. ]	Each	ı job	is pr	ocess	sed in			
		the order	of	C-A-	B. (	Calc	ulate	the	mini	imum			
		elapsed tin	ne a	nd id	le ti	me.							
	Jobs												
		Machine	1	2	3	4	5	6	7	8			
		A	4	6	3	4	5	3	6	2			
		В	8	10	7	8	11	8	9	13			
		С	5	6	2	3	4	9	15	11			

						UN	IT-	V					
10	a)	A furniture company has plants in cities A,B										CO5	12 M
		and C, which ship to four demand											
		loca	tions1,2,3	5, 4 wi	th tra	nsp	ortir	ng co	osts ( i	in			
		hune	dred ruped	es) as s	show	n in	the	follo	owing	5			
		table	e. Determ	nine m	inim	um (	otal						
		tran	sportation	cost.									
			Supply		Loc	catio	n						
					1	2	3	4	Cap	acity			
			А		3	5	7	4	50				
			В			8	5	2	50				
			С		1	9	7	3	50				
			Require	ement	20	60	30	40					
						(	<b>DR</b>		•			1	
11		Disp	patcher of	the po	olice	depa	artm	ent l	nas		L4	CO5	12 M
		rece	ived four	reques	sts fo	or po	lice	assi	stance	<b>e</b> .			
		Curr	rently, six	patrol	l-car	s are	ava	ilabl	le for				
		assig	gnment ar	nd the	estin	nated	d res	spon	se tim	ne (in			
		min	utes) are s	shown	in ta	ble 1	hat	follo	WS.				
						Pat	rol U	Unit					
			Incident	Incident 1 2 3 4 5 6									
			Ι	6	5	3		4	5	6			
			II	8	6	2	, ,	3	7	6			
			III	4	4	7		6	5	5			
			IV	3	3 7 9 8 4 7								
		(a) V	Which pat	rol un	it sho	ould	resp	pond	?				
		(b)	What will	l be av	erag	e res	spon	ise ti	me?				